Modal Aerosol Treatment in CAM: Evaluation and Indirect Effect

X. Liu, S. J. Ghan, R. Easter (PNNL)

J.-F. Lamarque, P. Hess, N. Mahowald, F. Vitt, H. Morrison, A. Gettelman, P. Rasch,

(NCAR)

P. Cameron-Smith, C. Chuang (LLNL)

Annica Ekman (Stockholm University)

U.S. DEPARTMENT OF ENERGY

Current Aerosol Treatment in CAM3

hydrophobic sulfate black sea salt 1 soil dust 1 carbon hydrophobic organic soil dust 2 sea salt 2 ammonium carbon hydrophilic black sea salt 3 soil dust 3 nitrate carbon secondary hydrophilic organic organic sea salt 4 soil dust 4 carbon carbon

Current Weaknesses in CAM

- Aerosol species are externally mixed (individual particles are composed of only a single species).
- Their size distribution is prescribed (number is diagnosed from the predicted mass).
 - Processes that should only affect mass (condensation, chemistry) also affect number.
 - Processes that only affect number (nucleation, coagulation) are neglected.
- Hydrophobic carbon ages to hydrophilic with prescribed timescale

Benchmark Aerosol Treatment for CAM4

Aitken

number
water
sulfate
ammmonium
secondary OC
sea salt

Accumulation

number
water
sulfate
ammonium
secondary OC
hydrophobic OC
BC
sea salt

Fine Soil Dust

number water soil dust sulfate ammonium

Fine Sea Salt

number water sea salt sulfate ammonium

coagulation condensation

All modes log-normal with prescribed width.

Total transported aerosol tracers: 38

Cloud-borne aerosol predicted but not transported.

Primary Carbon

number hydrophobic OC BC

Coarse Soil Dust

number water soil dust sulfate ammonium

Coarse Sea Salt

number water sea salt sulfate ammonium

New Processes

- New particle formation
- Coagulation within, between modes
- Dynamic condensation of trace gas (H2SO4, NH3) on aerosols
- Water uptake to internally mixed particles
- Intermode transfer (renaming) due to condensation, coagulation, and cloud chemistry
- Aging of primary carbon to accumulation mode based on sulfate coating from condensation & coagulation
- Aerosol number emissions
- Aerosol activation

Revised Processes

- Wet scavenging (stratiform & convective cloud)
 - ✓ In-cloud rainout based on activated (cloud phase) aerosol;
 - ✓ Below-cloud impaction scavenging rates (mass & no.) using a look-up table (wet size, precipitation rate).
- Size-dependent dry deposition (Zhang et al., 2001)
- Cloud sulfur chemistry
 - ✓ Sulfate mass produced distributed to modes based on number of activated aerosols in modes.
 - ✓ Include contribution from H2SO4 (g) uptakes
 - ✓ NH3 dissolution on pH
- Optical properties of internally-mixed hydrated aerosol.
- Emissions of sea salt with diameters of 0.02 1.0 um from Martensson et al. (2003)

CAM Simulations (CAM3.5.03)

- Modal aerosol (1.9x2.5), 3 years
 - benchmark present-day (PD) simulations
 - benchmark pre-industrial (PI) simulations
- Bulk aerosol (1.9x2.5), 3 years, present-day (PD) simulations
- Same emissions (OC, BC, DMS, SO2, SO4) for PD
- Same emission schemes (dust and coarse sea salt)
 - ultrafine sea salt emission for Modal aerosol
- Same oxidant fields for PD and PI (Modal and Bulk)

We can specify different MOZART chemistry mechanisms in the pre-processor to enable aerosol-chemistry coupling

BC Column Burden

BC zonal mean

BC Budgets (Modal)

	<u>Primary</u>	Accum.	Total	Others
Emission (Tg/yr)	6.8		6.8	10-19
Dry deposition (Tg/yr) Wet deposition (Tg/yr) Total sink (Tg/yr)	0.7 0.0	1.6 4.5	2.3 4.5 6.8	
Burden (Tg)	0.024(0.02)	0.084(0.086)	0.11(0.11)	0.13-0.29
Lifetime (days)			5.8	3.9-8.4

Results from bulk model in blue

OC Column Burden

OC zonal mean

OC Budgets (Modal)

	<u>Primary</u>	Accum.	Total	Others
Emission (Tg/yr)	27.8		27.8	
Dry deposition (Tg/yr) Wet deposition (Tg/yr) Total sink (Tg/yr)	4.1 0.02	5.2 18.4	9.4 18.4 27.8	
Burden (Tg)	0.16(0.08)	0.38(0.38)	0.54(0.46)	0.95-1.8
Lifetime (days)			7.1	3.9-6.4

Results from bulk model in blue

Dust column burden

Dust Budgets (Modal)

	<u>Fine</u>	Coarse	Total	<u>Others</u>
Emission (Tg/yr)	192	1282	1474 (1567)	
Dry deposition (Tg/yr) Wet deposition (Tg/yr) Total sink (Tg/yr)	41 151	784 502	825 653 1477	
Burden (Tg)	3.0(5.4)	6.2 (8.2)	9.2(13.7)	4-36
Lifetime (days)			2.3	1.9-7.1

Modal: 0.1-2 um (fine), 2-10 um (coarse);

Bulk: 0.1-2.5 um (fine), 2.5-10 um (coarse)

Sea salt column burden

Sea salt zonal mean

Sea Salt Budgets (Modal)

	<u>Fine</u>	Coarse	Total	<u>Others</u>
Emission (Tg/yr)	127	3709	3836 <mark>(3758</mark>)	
Dry deposition (Tg/yr) Wet deposition (Tg/yr) by below cloud Total sink (Tg/yr)	23 105	1751 1979 1046 <mark>(149)</mark>	1774 2084 3854	
Burden (Tg)	0.62(0.63)	5.1 (11.0)	5.7 (11.6)	4.3-12
Lifetime (days)			0.54	0.19-0.99

Modal: 0.02-1 um (fine), 1-10 um (coarse);

Bulk: 0.2-1 um (fine), 1-10 um (coarse)

SO4 Budgets (Modal)

Burden (Tg S):	0.43(0.56)
Lifetime (days):	3.3
Global dry deposition (Tg S/yr) :	8.8
Global wet deposition (Tg S/yr) :	38.7
Global SO4 sources (Tg S/yr) :	
by H2SO4 condensation	9.5
by H2O2	23.1
by O3	12.7
504 burden by reservoir (%):	
by 504 nuclei mode	2.5%
by 504 accumulation mode	92%
by Dust	3%
by Sea Salt	2.5%

Results from bulk model in blue

Modal - Compared with RSMAS SO4 Data

Compared with RSMAS SO4 Data

Modal - Compared with IMPROVE SO4 Data

Compared with IMPROVE SO4 Data

Compared with IMPROVE BC Data

CCN (S=0.1%)

Global Annual Means (Present Day)

	Modal	Bulk	OBS
LWP, g m ⁻²	104.5	129.9	
IWP, g m ⁻²	15.5	15.9	
SWCF, W m ⁻²	-58.3	-53.7	-54.2 (ERBE)
LWCF, W m ⁻²	28.0	27.7	30.4 (ERBE)
FLNTC, W m ⁻²	263.0	262.7	265.0 (ERBE)
CLDTOT, %	52.8	51.8	67.3 (ISCCP)
CLDLOW, %	35.5	34.4	21.8/33.6 (ISCCP/SAGE)

Aerosol Indirect Effect

Present – Past Shortwave Cloud Forcing (W/m2)

Present – Past Liquid Water Path (g/m2)

Global Mean = -1.1 W/m2

Timing

Remaining issues

- Simulation with Morrison microphysics and Modal aerosol reduces the simulated SWCF to -47 W/m2, which is 7-10 W/m2 too small.
- Simulations with Morrison microphysics and Mozart aerosol using the UW PBL scheme produce excessively large SWCF.
- Simulations coupling Modal aerosols with Morrison microphysics and the UW PBL scheme should be performed.
- The simpler version of Modal aerosol should be evaluated.
- Improvements in primary carbon emissions are needed.
- · A secondary organic aerosol mechanism for modal aerosol is under development.
- · Evaluate simulated aerosol optical depth.

THANKS!

504 column burden (Modal)

